Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier–Stokes Flow

نویسنده

  • Matthias Heinkenschloss
چکیده

The optimal boundary control of Navier–Stokes flow is formulated as a constrained optimization problem and a sequential quadratic programming (SQP) approach is studied for its solution. Since SQP methods treat states and controls as independent variables and do not insist on satisfying the constraints during the iterations, care must be taken to avoid a possible incompatibility of Dirichlet boundary conditions and incompressibility constraint. In this paper, compatibility is enforced by choosing appropriate function spaces. The resulting optimization problem is analyzed. Differentiability of the constraints and surjectivity of linearized constraints are verified and adjoints are computed. An SQP method is applied to the optimization problem and compared with other approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization Methods in Banach Spaces

In this chapter we present a selection of important algorithms for optimization problems with partial differential equations. The development and analysis of these methods is carried out in a Banach space setting. We begin by introducing a general framework for achieving global convergence. Then, several variants of generalized Newton methods are derived and analyzed. In particular, necessary a...

متن کامل

Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Optimal Control for Burgers Flow Using the Discontinuous Galerkin Method

The coupling of accurate computational fluid dynamics analysis with optimal control theory has the potential to advance active flow-control for complex fluid systems. In this paper, an optimal control framework for the viscous Burgers equation is constructed based on the Discontinuous Galerkin Method (DGM). A DGM discretization has several potential advantages for optimization studies including...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows

In part I of this article, we proposed a Lagrange–Newton–Krylov–Schur (LNKS) method for the solution of optimization problems that are constrained by partial differential equations. LNKS uses Krylov iterations to solve the linearized Karush–Kuhn–Tucker system of optimality conditions in the full space of states, adjoints, and decision variables, but invokes a preconditioner inspired by reduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997